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Abstract. Because of the isotropic and disordered nature of liquids, anisotropy hidden in many-
body intermolecular interactions is usually neglected. Thus, it has been believed so far that the only
order parameter required to describe a simple liquid is the density. Notaccepting thiscommon-sense
view, we argue that a new additional order parameter, which represents the spontaneous formation
of locally favoured structures, is necessary for the physical description of liquids near the lower
stability limit. This model explains well two mysterious phenomena of supercooled liquids: (i) the
large-scale density fluctuations known as ‘Fischer clusters’ and (ii) the phase separation of a one-
component liquid into two phases.

Generally, a liquid phase is bound by a gas phase and a solid phase, although some anisotropic
molecules exhibit an additional phase known as a liquid-crystalline phase above their solid
phases [1]. On lowering the temperature of the gas phase, the potential energy becomes
more important than the kinetic energy, and intermolecular interactions come into play. At
the gas—liquid phase transition point, attractive interactions prevail, and lead to the formation
of a ‘liquid’ phase. The principal physical quantity distinguishing the liquid phase from the
gas phase is the density. Both phases have complete translational and rotational symmetry,
and they are isotropic and homogeneous. Because of these features, a liquid state is usually
assumed to be describable by just one order parameter, density.

The physical properties of liquid in the equilibrium state are rather well understood, while
for liquid in the metastable state they are very poorly understood, especially near the liquid—
glass transition [2—4]. Here we mention three relevant examples:

(i) the liquid—glass transition phenomenon itself [2—4],
(i) large-scale density fluctuations in supercooled liquids [5-7], and
(i) an unusual phenomenon of phase separation of a simple one-component liquid into two
liquid phases [8, 9].

Since phenomenon (i) is well known, we here explain phenomena (ii) and (iii).

Phenomenon (ii). According to the standard theory of pure liquids, the structure
factor at wavenumbeg = 0, F(0), is determined by the isothermal compressibilky
as F(0) = pkpT K7 (p: density; kp: the Boltzmann constanf]: temperature) [10]. If
density is the only order parameter required, the light scattering intensjty=a® should be
given by1,(0) = (dn/dp)?F(0). This is actually the case for most pure liquids. Contrary to
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this common-sense expectation, however, Debye and Bueche found excess light scattering far
beyond this prediction and the existence of long-range density fluctuations with a correlation
lengthé,; of 200 nm in a glassy polymer [5]. Furthermore, Fisobieal [6] recently found that
large-scale density fluctuations commonly exist near the glass-transition tempé&iaarte

in molecular liquids such as ortho-terphenyl (OTP), bis-methyl-phenyl-cyclohexane (BMPC),
and bis-methyl-methoxy-phenyl-cyclohexane (BMMPC), and in polymeric liquids such as
poly(methyl methacrylate) and polysiloxane. These surprising results strongly suggest that
large-scale fluctuations, which are called ‘Fischer clusters’, commonly exist in various fragile
liquids. Their findings [6] are summarized as follows:

(A) Excess isotropic light scattering intensity beyaind0) [11].

(B) The Ornstein—Zernike form for the light scattering functioty) ~ 1/[1 +£342].

(C) A divergent increase if; near a glass-transition temperatdig which is suggestive of
the existence of a hidden critical poifit or spinodal temperaturg,, [12].

(D) A g2-dependence of the decay rafg, o g2, andT, — 0 with T — T, (a diffusional
ultraslow mode).

(E) The annealing behaviour after a temperature quendry to>7,) can be described by
I(g,t) = I(q,0) + AI[1 — exp(—t/7.)], where Al = I(g,o0) — I(g,0). Itis found
thatz, is almost independent gf.

(F) Cluster formation can be avoided by a rapid quench from far above a melting point to near
or belowT,.

(G) Vacuum distillation of OTP avoids clusters being produced; however, after melting they
appear again.

None of these phenomena can be understood in the framework of the conventional theories
of liquids [6]. Furthermore, their connection to glass transitions has so far been largely
unexplored.

Phenomenon (iii). Aasland and McMillan [8] recently reported a striking experimental
finding: for the supercooled state of Al;—Y,03, they directly observed, by means of micro-
scopy, the coexistence of two glassy liquids, which have the same composition but different
densities. This surprising finding indicates that even a single-component liquid can phase
separate into two liquid phases [2]. Similar phenomena have been reported by a number of
researchers for various liquids (see the references in [2, 8]). Numerical simulations of water
also indicate the possibilities of a second critical point and the coexistence of two distinct forms
of amorphous water [9]. Thus, the phenomena may be universal for supercooled liquids.

The key to understanding vitrification phenomena and these unusual (even mysterious)
phenomenais, we believe, to realize that the above-mentioned common-sense view that a liquid
state can be described by just one order parameter (density) may be basically ‘wrong’. There are
a number of studies that have tried to improve the theory of liquids by including many-body
effects, or higher-order density correlations. Most important is the concept of local bond-
orientational order (LORO) [13, 14], which is based on the fact that even spherical molecules
locally favour a tetrahedral configuration in a liquid phase. For example, Frank [13] pointed
out that icosahedral clusters composed of 13 particles have a significantly lower energy than
the more obvious ‘crystallographic’ arrangements of the corresponding fcc or hcp structures.
On the basis of this idea, he explained why a simple liquid metal can be so deeply supercooled.
This concept of LORO led to the recent developments along these lines [13—-18]. However,
we also need to consider specific anisotropic interactions that commonly occur in molecules
having no spherical symmetry [19, 20]. The most extreme case is the formation of a local
tetrahedral network due to covalent or hydrogen bonding as observedindgby©erol, and
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water [20]. In general, thus, a liquid at least ‘locally’ favours two different types of symmetry:

one maximizes density, while another maximizes the quality of local bonds. The symmetry

of the latter is generally not consistent with the crystallographic symmetry of the former.

This causes energetic frustration, which we propose plays key roles in the stabilization of a

supercooled liquid and the resulting vitrification [19]. It should be stressethihfdrmation of

locally favoured structures mentioned above always accompanies a decrease in local density
Here we explain our ‘new physical picture of liquid’ intuitively. We argue that

(a) there exist rather well-defined, unique, locally favoured structures in any liquid and

(b) such structures are created in a sea of normal-liquid structures and their number density
increases upon cooling since they are energetically more favourable than normal-liquid
structures.

We define a new ‘bond order paramet&¢r) as the ‘local fraction of locally favoured struct-
ures’ [21]. A simple two-state model tells us that

exp(—BE
g5 SXUPEs) ~ 85 explB(AE — P Av)]. (1)
8p exp(—ﬂEp) + gsexp(—BEy) 8p
Here S is the average of(r), E; andg, are the energy and the degeneracy of itistate,
B = 1/kgT, P is the pressure, and E and Avg are the energy gain and volume increase
upon the formation of locally favoured structures, respectively, and, thus,

S =

Ep—ES:AE—AvsP.

In the derivation of the final relation of equation (1), we use the fact ghat> gg, which

is a direct consequence of the uniqueness of locally favoured structures and the existence
of many possible configurations of normal-liquid structures. This picture is supported by
the validity of our two-order-parameter model of water [20]. At high temperatures, locally
favoured structures are created ‘randomly’ in space and time. At low temperatures, on the
other hand, locally favoured structures are created at higher probability near to other locally
favoured structurescooperative creation there is a possibility that this cooperative effect
leads to a gas-liquid-like phase transition of locally favoured structures, or a liquid—liquid
phase transition, upon cooling.

On the basis of this picture, we propose that the behaviour of supercooled liquids can be
described by a two-order-parameter Landau-type theory [22—24], which includes couplings
between the density and bond ordef. Our theory can explain well the following unusual
phenomena exhibited by supercooled liquids within the same framework:

(i) vitrification (slow dynamics near a glass transition) [19],
(ii) critical-like large-scale density fluctuations, and
(iii) phase separation of a supercooled liquid into two liquid (glassy) phases.

As regards phenomenon (i), we argued [19] that the random natufe-pbn a short length

scale (see figure 1) produces the random-transition-temperature and random-field effects on
the ordering op atq.,, (¢.-,: the characteristic wavenumber of a crystalline lattice}—namely,
crystallization—in much the same way as in spin systems, and that these spin-glass-like effects
are the origin of the vitrification and slow-relaxation. Thus, the strength of frustration
betweenp and S is a physical factor controlling ‘fragility’: stronger frustration causes a
stronger liquid [19]. We propose that phenomena (ii) and (iii) are caused by a gas-liquid-like
phase transition of locally favoured structures, and that the coupling beteregmwavelength
(smallg) spatial fluctuations op and S, §p andsS (see figure 1), plays a major role. In
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Figure 1. A schematic diagram of spatial fluctuations $if Short-wavelength fluctuations are
responsible for vitrification, while long-wavelength ones are responsible for Fischer clusters.

this letter, we focus just on phenomena (ii) and (iii), since phenomenon (i) has already been
discussed elsewhere [19].

First we construct a phenomenological Landau-type theory, which describes gas—liquid-
like critical phenomena of locally favoured structures. Since we assume in this letter that a
system is in a liquid state and does not crystallize, we take the coarse-grained Hamiltonian of
liquids [25], which governs long-wavelength density fluctuations, as

BH =/dr [%8p2+a—;8p3+%8p4:| =/dr £(80)

wheret anda, are positive and = B(p?Kr)~2. Herep is the average density and is a
decreasing function df (note thato = p + 8p). az may be positive or negative. For a real
liquid, however, the bond order parameter plays essential roles, as explained above. Using
8S = S — §, we introduce the following minimal Hamiltonian, which goveyluctuations

near a gas—liquid-like critical point or mean-field spinodal lines of bond ordering:

BHs = /dr [g 532+%5s4} = /dr 2(85)

wherex = bo(T — T§) (T a critical or spinodal temperature of bond ordering without
the coupling top), andb, andb, are positive constants. By further including the gradient
terms and the lowest-order (up to second order) couplings betfgeands S, we obtain the
following Hamiltonian that we believe is relevant to the physical description of liquid near a
gas-liquid-like transition of locally favoured structures:

K K
BH,s =fdr [h(ap,85)+7"|wp|z+7S|V(SS|2] )

R - C2p ¢ 25 C25 - cw2
h(ép,8S) = f(8p) +8(8S) —c1,8p (S +8S) — cas(p +8p) 88 — > 5p°S — > P 88°.
3)

Note thatf, g, andh are dimensionless free-energy densities. As explained before, anincrease
in S leads to a decrease jnand an increase in, while an increase ip leads to a decrease in
S and7¢. Hence, all of the coupling constanisin equation (3) should be negative.

Here we consider how the ultraslow dynamics [263pfand S should be described.
At a point of liquid instability against density ordering, the supercooled liquid as a whole
becomes intrinsically unstable with respect to a density fluctuation of wavenuifes:
first-scattering-peak wavenumber). This causes the softening of a non-propagating soft mode
with ¢ ~ go [27], which leads to the breakdown of the incompressibility assumption. Thus,
we should regard a supercooled liquid as being compressible. For such compressible liquids,
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it is known [1] thatsp, x —8Q, (Q: heat mode), as long as we consider ultraslow dynamics

at smallg. Thus,8p should be treated as a conserved order parameter obeying a diffusion-

type equation. This conclusion can also be derived from a more microscopic basis [29]. On
the other handj$ should be treated as a non-conserved order parameter. Thus, we have the
following dynamic equations:

adp(r,t) —1, V2 K, V250 + ah(8p, 8S) @
ot adp(r,t)

a8S(r,t ah(3p, 8S

L:_LS —K5V28S+L (5)
ot a8S(r,t)

whereL, and Ly are kinetic coefficients. Here the Gaussian noise terms are not written
out explicitly. We propose that equations (2)—(5) are the fundamental equations universally
describing the ultraslow dynamics [26] of supercooled liquids. These dynamic equations are
basically the same as those of the so-called ‘model C’ [22-24].

Within the framework of a linearized theory [23, 24], we study the slow dynamics of
large-scale fluctuations. First we introduce a vector notation:

e _[ 60
w_|:8S] and wo_|:(55)i|'

The average values of the order paramet@‘ra@dS‘", are shifted due to their bilinear coupling
compared to those without the couplingands, respectively, by

ClpS

(8p) ~ and  (5S) ~ 2
T* K*

wheret* =t — czp§ andk™* = k — cp5 0. After linearization with respect to small deviations

«_ | 00"
= 35]

from xq, equations (4) and (5) reduce to the following eigenvalue problem on using

x =z +x"explig-r+wt)

(g: wave vector)Az* = —wx*, whereA = T(H + ¢?K) with

_[Lyg* O _|K, O
T= [ 0 L K=10 ki ©)
and
hspsp  hspss T* c1p tCis
H= 0 0p 4 — £ 7
[hssap hasssi| [C1p *cis K* :| 0

whereH is the so-called Hesse matrix and the derivativgs= 9%h/dx dy are taken ako. In
the limit of smallg, the two dispersion branches (see figure 2) are given by

detH
wy~—L, [h } q”+0(q% ®)
5858
Lphgpss 2 4
wy ~ —Lg|hssss + | Ks + ———— Jq° | + O(g"). ()]
Lghssss

In the limit of largeg, on the other handy; ~ —L,¢* andw, ~ —LsKsq>.

Before discussing critical-like phenomena on the basis of the above general results for a
two-order-parameter model, we consider the mechanism of the avoidance of crystallization in
glass-forming material. Crystallization requires the break-up of locally favoured structures,
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Figure 2. Dispersion branches of a supercooled liquid in a smpakgion. w1(q) is the critical
mode, and it becomes unstable beldw In an unstable region, the mode with wavenumdger
has the maximum growth rate.

since their symmetry is not consistent with the crystallographic symmetry. In addition to the
interface energy, thus, a system has to overcome a large energy barrier corresponding to the
break-up or deformation of all locally favoured structures in a critical nucleus of crystal, which
costs an energy of the orderefA E Sv. (v, is the volume of a critical nucleus). This gives an
extra mechanism preventing crystallization in addition to the classical one [4]. Crystallization
can thus be kinetically prevented by this extra energetic barrier to nucleation being present for
a sufficient cooling rate, and, therefore, a supercooled state is kinetically stabilized. Hence we
can regard a supercooled state as a quasi-equilibrium thermodynamic state.

Here we consider critical fluctuations caused by the existence of a hidden critical point
in a supercooled liquid. The avoidance of crystallization due to local bond ordering reveals a
critical pointT, or a spinodal line usually hidden by crystallization. In general, thus, the mode
having the eigenvalue; can become unstable first when det t*«* — (c1, + c15)% < 0, as
shown in figure 2. Hence critical-like fluctuations enhance with approach to a tempefature
where det = 0. Thus,T, = T&* + (c1, + c15)%/Tho, WhereT{* = T + ca5p/bs.

Here we consider light-scattering phenomena on the basis of the above model. The
refractive index: is a function of not only, but alsaS, sincen for locally favoured structures
is smaller than that for normal structures. In our model, tlgg) is given by [28]

an\? .2 on\ [ on ¥ ook an\? )2
I(g) x (5) (18041 >+2<%) <£><5pq 887, + (5) (185,19 (10)

wheren is the refractive index. These correlation functions at sgnedin be straightforwardly
obtained as

(180517 = (™ + Ksq*)/A(q) (11)
(8pg 05%,) = (c1p +c15)/Alg) (12)
(188317 = (x* + K,q%)/ A(q) (13)
where
A(g) = (" + K,q®) (k* + K5q?) — (c1, + c15)? ~ detH + [t* K5 + k" K ] ¢ (14)

On the basis of the above two-order-parameter description of liquids, we now explain
the experimental findings of Fischet al, which are summarized in the introduction as facts
(A)—(F). In our model, fact (A) can be explained by < c1, + c1s, T*, which guarantees the
dominance of equation (12) and equation (13) over equation (11) near the spinodal lines. This
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is a direct consequence of the fact that there is instability for bond fluctuations (a gas—liquid-
like transition of locally favoured structures) but not for density fluctuations in a liquid state.
The reason for the apparent violation of the compressibility sum rule [10] can be understood
by comparing equation (10) [28] with

1 r r
= / dr (0" ()" (0)

wheredp” = §p* + c1,/t* 85" is the fluctuation of real density, on noting the smallness of
lc1,/T*|. Fact (B) is also consistent with tigedependence of equations (12) and (13). In our
model,& is given by

£2 ~ (t*Kg +«*K )/ detH

which diverges a§ — T, nearT,. Within the mean-field approximatio&, ~ (T — 7,)~Y2.

This relation is consistent with fact (C), as shown in figure 3. Fact (D), which is suggestive
of simple diffusion [6], can be explained as follows. In our model, bipthandsS; can be
expressed as linear combinations of two eigenmodes characterizedhbgw,. In particular,

the ‘slow’ critical mode decays as e ), and the decay rate of this modg, = —wy, is
proportional ta? (see equation (8)). Furthermoig, oc detH o< (T —7.) — OwithT — T...

Thus, our model can well explain all essential features (facts (A)—(D)) of the anomalous excess
light scattering observed in supercooled liquids (‘Fischer clusters’) [6] at least qualitatively.

K7

‘\
*
80 "\
‘\
A Y
—~ \\
E 70 ° \\.
N .“\~
3 ...
ws 60 s
o~
~~‘=~\
50 -

3/0 320 330 340 350
T(K)

Figure 3. Fitting of our predictiort; = &((T — T.)/T.) Y2 to the T-dependence of,; exp-
erimentally observed for BMMPC [6]. The adjustable parameters are determiggd=a22 nm

andT, = 289K, although they may have large errors. Thislong bare correlation length is consistent
with the assumption of the mean-field spinodal, according to the Ginzburg criterion.

Next we speculate as regards facts (E)—-(G). Fact (E) is apparently inconsistent with the
diffusional dynamics of density fluctuations, and has been considered to be quite puzzling [6].
However, it can be explained reasonably as follows. The equilibrium dynamics is dominated by
a slow diffusional mode, while the non-equilibrium dynamics is dominated by a non-diffusional
mode. Note that, in the lattes, can be ‘locally’ (not diffusionally) changed. This is because
during this non-equilibrium process, after a temperature quench, the average datssty
increases, and thus the density is ‘not’ conserved, contrary to the equilibrium case. Because of
this local nature of the change in 7. can beg-independent for this non-equilibrium process.
Next, fact (F) is due to the feature that the time required for cluster formatipbecomes
extremely long forT; near to or belowr,, reflecting the increase in The divergence of,
with decreasing” means that a sample inevitably becomes out of equilibrium before reaching
T., and thusr, is kinetically hidden in real experiments, (readily becomes longer than the
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0

Figure 4. A contour plot of the free energy of a supercooled liquid befpvon the(p, S) plane.

The region of(p, S) near a normal-liquid state aiy is shown. The crystalline stat§ ~ 0) is

located outside this region. Crystallization is kinetically prevented by the presence of alarge energy
barrier (see the text). A homogeneous one-component liquid can demix into two phases, indicated
by the filled circles on thép, S) plane.

a-relaxation time af,, even at a temperature far abdfg. Finally, we speculate concerning

fact (G). Vacuum distillation may realize the homogeneous situagijon<(0, §S ~ 0), which

is marginally stable and lasts for a long time. However, crystallization destroys this metastable
state easily.

Finally we consider phase separation belfjw Because of the existence of a new order
parametesS and the resulting coupling betweerands, phase separation can proceed on the
(p, S) plane even for a one-component liquid [30], as shown schematically in figure 4. For
the case wherk;ssss > 0 and deH < 0 [31], the eigenvector of the unstable branch shown in
figure 2 is of mixed character for ajl(see equation (8)), and, thus, fluctuations of Batland
38 grow simultaneously. Ay = 0 the component8* andsS* of the eigenvectog™* satisfy
8p* /88" = —hssss/ hspss. This is quite consistent with the phase-separation behaviour of
water demonstrated by Stanleyal [9] with numerical simulations near a so-called ‘second
critical point’, which may correspond to our gas-liquid-like critical point of locally favoured
structures: according to their simulation, density fluctuati@ps have a phase difference of
~180 from fluctuations of the number density of hydrogen bond##). Our model naturally
predicts this negative correlation between two order parameters [32]: a high-density region
has less bond order, while a low-density region has more bond order (see figure 4). It can,
thus, naturally explain why phase coexistence is possible in a single-component liquid [2,8, 9].
Our model gives an intuitive physical explanation for a second critical point proposed by
Stanleyet al [9] and demonstrates that it may generally exist in any liquid. Glass-forming
liquids automatically satisfy the condition necessary for the existence of such a gas—liquid-like
transition, since vitrification is itself caused by the existenclecdlly favoured structurem
our picture [19].

In conclusion, we propose that the viscous slowdown 1#&af2, 3, 19], the ‘Fischer
clusters’ [6], and eventually the liquid—liquid phase transition [2, 8,9, 30] are all related, and
appear as successive consequences of the competition (negative couplings) between the density
and bond ordering. In particular, the latter two phenomena are caused by a gas-liquid-like
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phase transition of locally favoured structures—in other words,ctiikective creationof
locally favoured structures. We stress that a new additional order parameter (the bond order
parameter) is necessary for the physical description of (supercooled) liquids, contrary to the
common-sense view that liquids can be described using just one order parameter, density. This
two-order-parameter model can also describe the thermodynamic and dynamic anomalies of
liquid water [20]. Further studies are highly desirable, to check the relevance of our new
picture of liquid and its universality.

Finally, we mention some predictions of our model:

(a) There should exist neither clusters nor anomalous excess scattering for a liquid, which
does not form glass easilyy,, c1s ~ 0).

(b) The scattering intensity should decrease with increase in pressure for ordinary liquids.

(c) AlargerAvg leads to largebn /oS [28].

(d) Liquids with excess scattering should exhibit ‘polyamorphism’ at lower temperatures.

(e) Critical-like phenomena should be observed only in a mean-field-type system having long-
range interactions between locally favoured structures. This may explain why ‘Fischer
clusters’ are often observed in polymers.

The author is gratefubtS F Edwards, E M Terentjev, C-Y D Lu, D V Grinev, E W Fischer,
S Dietrich, R Evans, and M Mezard for fruitful discussions.
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