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Abstract. Because of the isotropic and disordered nature of liquids, anisotropy hidden in many-
body intermolecular interactions is usually neglected. Thus, it has been believed so far that the only
order parameter required to describe a simple liquid is the density. Not accepting this common-sense
view, we argue that a new additional order parameter, which represents the spontaneous formation
of locally favoured structures, is necessary for the physical description of liquids near the lower
stability limit. This model explains well two mysterious phenomena of supercooled liquids: (i) the
large-scale density fluctuations known as ‘Fischer clusters’ and (ii) the phase separation of a one-
component liquid into two phases.

Generally, a liquid phase is bound by a gas phase and a solid phase, although some anisotropic
molecules exhibit an additional phase known as a liquid-crystalline phase above their solid
phases [1]. On lowering the temperature of the gas phase, the potential energy becomes
more important than the kinetic energy, and intermolecular interactions come into play. At
the gas–liquid phase transition point, attractive interactions prevail, and lead to the formation
of a ‘liquid’ phase. The principal physical quantity distinguishing the liquid phase from the
gas phase is the density. Both phases have complete translational and rotational symmetry,
and they are isotropic and homogeneous. Because of these features, a liquid state is usually
assumed to be describable by just one order parameter, density.

The physical properties of liquid in the equilibrium state are rather well understood, while
for liquid in the metastable state they are very poorly understood, especially near the liquid–
glass transition [2–4]. Here we mention three relevant examples:

(i) the liquid–glass transition phenomenon itself [2–4],
(ii) large-scale density fluctuations in supercooled liquids [5–7], and

(iii) an unusual phenomenon of phase separation of a simple one-component liquid into two
liquid phases [8,9].

Since phenomenon (i) is well known, we here explain phenomena (ii) and (iii).

Phenomenon (ii). According to the standard theory of pure liquids, the structure
factor at wavenumberq = 0, F(0), is determined by the isothermal compressibilityKT
asF(0) = ρkBTKT (ρ: density; kB : the Boltzmann constant;T : temperature) [10]. If
density is the only order parameter required, the light scattering intensity atq = 0 should be
given byIρ(0) = (∂n/∂ρ)2F(0). This is actually the case for most pure liquids. Contrary to
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this common-sense expectation, however, Debye and Bueche found excess light scattering far
beyond this prediction and the existence of long-range density fluctuations with a correlation
lengthξcl of 200 nm in a glassy polymer [5]. Furthermore, Fischeret al [6] recently found that
large-scale density fluctuations commonly exist near the glass-transition temperatureTg both
in molecular liquids such as ortho-terphenyl (OTP), bis-methyl-phenyl-cyclohexane (BMPC),
and bis-methyl-methoxy-phenyl-cyclohexane (BMMPC), and in polymeric liquids such as
poly(methyl methacrylate) and polysiloxane. These surprising results strongly suggest that
large-scale fluctuations, which are called ‘Fischer clusters’, commonly exist in various fragile
liquids. Their findings [6] are summarized as follows:

(A) Excess isotropic light scattering intensity beyondIρ(0) [11].
(B) The Ornstein–Zernike form for the light scattering function,I (q) ∼ 1/[1 + ξ2

clq
2].

(C) A divergent increase inξcl near a glass-transition temperatureTg, which is suggestive of
the existence of a hidden critical pointTc or spinodal temperatureTsp [12].

(D) A q2-dependence of the decay rate,0q ∝ q2, and0q → 0 with T → Tc (a diffusional
ultraslow mode).

(E) The annealing behaviour after a temperature quench toTf (>Tg) can be described by
I (q, t) = I (q, 0) +1I [1 − exp(−t/τe)], where1I = I (q,∞) − I (q, 0). It is found
thatτe is almost independent ofq.

(F) Cluster formation can be avoided by a rapid quench from far above a melting point to near
or belowTg.

(G) Vacuum distillation of OTP avoids clusters being produced; however, after melting they
appear again.

None of these phenomena can be understood in the framework of the conventional theories
of liquids [6]. Furthermore, their connection to glass transitions has so far been largely
unexplored.

Phenomenon (iii). Aasland and McMillan [8] recently reported a striking experimental
finding: for the supercooled state of Al2O3–Y2O3, they directly observed, by means of micro-
scopy, the coexistence of two glassy liquids, which have the same composition but different
densities. This surprising finding indicates that even a single-component liquid can phase
separate into two liquid phases [2]. Similar phenomena have been reported by a number of
researchers for various liquids (see the references in [2, 8]). Numerical simulations of water
also indicate the possibilities of a second critical point and the coexistence of two distinct forms
of amorphous water [9]. Thus, the phenomena may be universal for supercooled liquids.

The key to understanding vitrification phenomena and these unusual (even mysterious)
phenomena is, we believe, to realize that the above-mentioned common-sense view that a liquid
state can be described by just one order parameter (density) may be basically ‘wrong’. There are
a number of studies that have tried to improve the theory of liquids by including many-body
effects, or higher-order density correlations. Most important is the concept of local bond-
orientational order (LORO) [13,14], which is based on the fact that even spherical molecules
locally favour a tetrahedral configuration in a liquid phase. For example, Frank [13] pointed
out that icosahedral clusters composed of 13 particles have a significantly lower energy than
the more obvious ‘crystallographic’ arrangements of the corresponding fcc or hcp structures.
On the basis of this idea, he explained why a simple liquid metal can be so deeply supercooled.
This concept of LORO led to the recent developments along these lines [13–18]. However,
we also need to consider specific anisotropic interactions that commonly occur in molecules
having no spherical symmetry [19, 20]. The most extreme case is the formation of a local
tetrahedral network due to covalent or hydrogen bonding as observed in SiO2, glycerol, and
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water [20]. In general, thus, a liquid at least ‘locally’ favours two different types of symmetry:
one maximizes density, while another maximizes the quality of local bonds. The symmetry
of the latter is generally not consistent with the crystallographic symmetry of the former.
This causes energetic frustration, which we propose plays key roles in the stabilization of a
supercooled liquid and the resulting vitrification [19]. It should be stressed thatthe formation of
locally favoured structures mentioned above always accompanies a decrease in local density.

Here we explain our ‘new physical picture of liquid’ intuitively. We argue that

(a) there exist rather well-defined, unique, locally favoured structures in any liquid and
(b) such structures are created in a sea of normal-liquid structures and their number density

increases upon cooling since they are energetically more favourable than normal-liquid
structures.

We define a new ‘bond order parameter’S(r) as the ‘local fraction of locally favoured struct-
ures’ [21]. A simple two-state model tells us that

S̄ = gS exp(−βES)
gρ exp(−βEρ) + gS exp(−βES) ∼

gS

gρ
exp[β(1E − P 1vS)]. (1)

Here S̄ is the average ofS(r), Ei andgi are the energy and the degeneracy of thei-state,
β = 1/kBT , P is the pressure, and1E and1vS are the energy gain and volume increase
upon the formation of locally favoured structures, respectively, and, thus,

Eρ − ES ' 1E −1vS P.
In the derivation of the final relation of equation (1), we use the fact thatgρ � gS , which
is a direct consequence of the uniqueness of locally favoured structures and the existence
of many possible configurations of normal-liquid structures. This picture is supported by
the validity of our two-order-parameter model of water [20]. At high temperatures, locally
favoured structures are created ‘randomly’ in space and time. At low temperatures, on the
other hand, locally favoured structures are created at higher probability near to other locally
favoured structures (cooperative creation): there is a possibility that this cooperative effect
leads to a gas–liquid-like phase transition of locally favoured structures, or a liquid–liquid
phase transition, upon cooling.

On the basis of this picture, we propose that the behaviour of supercooled liquids can be
described by a two-order-parameter Landau-type theory [22–24], which includes couplings
between the densityρ and bond orderS. Our theory can explain well the following unusual
phenomena exhibited by supercooled liquids within the same framework:

(i) vitrification (slow dynamics near a glass transition) [19],
(ii) critical-like large-scale density fluctuations, and

(iii) phase separation of a supercooled liquid into two liquid (glassy) phases.

As regards phenomenon (i), we argued [19] that the random nature ofS(r) on a short length
scale (see figure 1) produces the random-transition-temperature and random-field effects on
the ordering ofρ atqcry (qcry : the characteristic wavenumber of a crystalline lattice)—namely,
crystallization—in much the same way as in spin systems, and that these spin-glass-like effects
are the origin of the vitrification and slowα-relaxation. Thus, the strength of frustration
betweenρ and S is a physical factor controlling ‘fragility’: stronger frustration causes a
stronger liquid [19]. We propose that phenomena (ii) and (iii) are caused by a gas–liquid-like
phase transition of locally favoured structures, and that the coupling betweenlong-wavelength
(small-q) spatial fluctuations ofρ andS, δρ and δS (see figure 1), plays a major role. In
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Figure 1. A schematic diagram of spatial fluctuations ofS. Short-wavelength fluctuations are
responsible for vitrification, while long-wavelength ones are responsible for Fischer clusters.

this letter, we focus just on phenomena (ii) and (iii), since phenomenon (i) has already been
discussed elsewhere [19].

First we construct a phenomenological Landau-type theory, which describes gas–liquid-
like critical phenomena of locally favoured structures. Since we assume in this letter that a
system is in a liquid state and does not crystallize, we take the coarse-grained Hamiltonian of
liquids [25], which governs long-wavelength density fluctuations, as

βHρ =
∫

dr

[
τ

2
δρ2 +

a3

3
δρ3 +

a4

4
δρ4

]
=
∫

dr f (δρ)

whereτ anda4 are positive andτ = β(ρ̄2KT )
−2. Here ρ̄ is the average density and is a

decreasing function ofT (note thatρ = ρ̄ + δρ). a3 may be positive or negative. For a real
liquid, however, the bond order parameter plays essential roles, as explained above. Using
δS = S − S̄, we introduce the following minimal Hamiltonian, which governsS-fluctuations
near a gas–liquid-like critical point or mean-field spinodal lines of bond ordering:

βHS =
∫

dr

[
κ

2
δS2 +

b4

4
δS4

]
=
∫

dr g(δS)

whereκ = b2(T − T ∗S ) (T ∗S : a critical or spinodal temperature of bond ordering without
the coupling toρ), andb2 andb4 are positive constants. By further including the gradient
terms and the lowest-order (up to second order) couplings betweenδρ andδS, we obtain the
following Hamiltonian that we believe is relevant to the physical description of liquid near a
gas–liquid-like transition of locally favoured structures:

βHρS =
∫

dr [h(δρ, δS) +
Kρ

2
|∇ δρ|2 +

KS

2
|∇ δS|2] (2)

h(δρ, δS) = f (δρ) + g(δS)− c1ρ δρ (S̄ + δS)− c1S(ρ̄ + δρ) δS − c2ρ

2
δρ2 S̄ − c2S

2
ρ̄ δS2.

(3)

Note thatf , g, andh are dimensionless free-energy densities. As explained before, an increase
in S leads to a decrease inρ and an increase inτ , while an increase inρ leads to a decrease in
S andT ∗S . Hence, all of the coupling constantsci in equation (3) should be negative.

Here we consider how the ultraslow dynamics [26] ofδρ andδS should be described.
At a point of liquid instability against density ordering, the supercooled liquid as a whole
becomes intrinsically unstable with respect to a density fluctuation of wavenumberq0 (q0:
first-scattering-peak wavenumber). This causes the softening of a non-propagating soft mode
with q ∼ q0 [27], which leads to the breakdown of the incompressibility assumption. Thus,
we should regard a supercooled liquid as being compressible. For such compressible liquids,
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it is known [1] thatδρq ∝ −δQq (Q: heat mode), as long as we consider ultraslow dynamics
at smallq. Thus,δρ should be treated as a conserved order parameter obeying a diffusion-
type equation. This conclusion can also be derived from a more microscopic basis [29]. On
the other hand,δS should be treated as a non-conserved order parameter. Thus, we have the
following dynamic equations:

∂ δρ(r, t)

∂t
= Lρ ∇2

[
−Kρ ∇2 δρ +

∂h(δρ, δS)

∂ δρ(r, t)

]
(4)

∂ δS(r, t)

∂t
= −LS

[
−KS ∇2 δS +

∂h(δρ, δS)

∂ δS(r, t)

]
(5)

whereLρ andLS are kinetic coefficients. Here the Gaussian noise terms are not written
out explicitly. We propose that equations (2)–(5) are the fundamental equations universally
describing the ultraslow dynamics [26] of supercooled liquids. These dynamic equations are
basically the same as those of the so-called ‘model C’ [22–24].

Within the framework of a linearized theory [23, 24], we study the slow dynamics of
large-scale fluctuations. First we introduce a vector notation:

x =
[
δρ

δS

]
and x0 =

[ 〈δρ〉
〈δS〉

]
.

The average values of the order parameters,ρ̄r andS̄r , are shifted due to their bilinear coupling
compared to those without the coupling,ρ̄ andS̄, respectively, by

〈δρ〉 ∼ c1ρS̄

τ ∗
and 〈δS〉 ∼ c1Sρ̄

κ∗

whereτ ∗ = τ − c2ρS̄ andκ∗ = κ − c2Sρ̄. After linearization with respect to small deviations

x∗ =
[
δρ∗

δS∗

]
from x0, equations (4) and (5) reduce to the following eigenvalue problem on using

x = x0 + x∗ exp(iq · r + ωt)

(q: wave vector):Ax∗ = −ωx∗, whereA = T(H + q2K) with

T =
[
Lρq

2 0
0 LS

]
K =

[
Kρ 0
0 KS

]
(6)

and

H =
[
hδρ δρ hδρ δS
hδS δρ hδS δS

]
=
[

τ ∗ c1ρ + c1S

c1ρ + c1S κ∗

]
(7)

whereH is the so-called Hesse matrix and the derivativeshxy = ∂2h/∂x ∂y are taken atx0. In
the limit of smallq, the two dispersion branches (see figure 2) are given by

ω1 ∼ −Lρ
[

detH

hδS δS

]
q2 + O(q4) (8)

ω2 ∼ −LS
[
hδS δS +

(
KS +

Lρh
2
δρ δS

LShδS δS

)
q2

]
+ O(q4). (9)

In the limit of largeq, on the other hand,ω1 ∼ −Lρq4 andω2 ∼ −LSKSq2.
Before discussing critical-like phenomena on the basis of the above general results for a

two-order-parameter model, we consider the mechanism of the avoidance of crystallization in
glass-forming material. Crystallization requires the break-up of locally favoured structures,
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Figure 2. Dispersion branches of a supercooled liquid in a small-q region. ω1(q) is the critical
mode, and it becomes unstable belowTc. In an unstable region, the mode with wavenumberqm
has the maximum growth rate.

since their symmetry is not consistent with the crystallographic symmetry. In addition to the
interface energy, thus, a system has to overcome a large energy barrier corresponding to the
break-up or deformation of all locally favoured structures in a critical nucleus of crystal, which
costs an energy of the order of∼1E S̄vc (vc is the volume of a critical nucleus). This gives an
extra mechanism preventing crystallization in addition to the classical one [4]. Crystallization
can thus be kinetically prevented by this extra energetic barrier to nucleation being present for
a sufficient cooling rate, and, therefore, a supercooled state is kinetically stabilized. Hence we
can regard a supercooled state as a quasi-equilibrium thermodynamic state.

Here we consider critical fluctuations caused by the existence of a hidden critical point
in a supercooled liquid. The avoidance of crystallization due to local bond ordering reveals a
critical pointTc or a spinodal line usually hidden by crystallization. In general, thus, the mode
having the eigenvalueω1 can become unstable first when detH = τ ∗κ∗ − (c1ρ + c1S)

2 < 0, as
shown in figure 2. Hence critical-like fluctuations enhance with approach to a temperatureTc
where detH = 0. Thus,Tc = T ∗∗S + (c1ρ + c1S)

2/τb2, whereT ∗∗S = T ∗S + c2Sρ̄/b2.
Here we consider light-scattering phenomena on the basis of the above model. The

refractive indexn is a function of not onlyρ, but alsoS, sincen for locally favoured structures
is smaller than that for normal structures. In our model, thus,I (q) is given by [28]

I (q) ∝
(
∂n

∂ρ

)2

〈|δρ∗q |2〉 + 2

(
∂n

∂ρ

)(
∂n

∂S

)
〈δρ∗q δS∗−q〉 +

(
∂n

∂S

)2

〈|δS∗q |2〉 (10)

wheren is the refractive index. These correlation functions at smallq can be straightforwardly
obtained as

〈|δρ∗q |2〉 = (κ∗ +KSq
2)/A(q) (11)

〈δρ∗q δS∗−q〉 = (c1ρ + c1S)/A(q) (12)

〈|δS∗q |2〉 = (τ ∗ +Kρq
2)/A(q) (13)

where

A(q) = (τ ∗ +Kρq
2)(κ∗ +KSq

2)− (c1ρ + c1S)
2 ∼ detH + [τ ∗KS + κ∗Kρ ]q2. (14)

On the basis of the above two-order-parameter description of liquids, we now explain
the experimental findings of Fischeret al, which are summarized in the introduction as facts
(A)–(F). In our model, fact (A) can be explained byκ∗ � c1ρ + c1S, τ

∗, which guarantees the
dominance of equation (12) and equation (13) over equation (11) near the spinodal lines. This
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is a direct consequence of the fact that there is instability for bond fluctuations (a gas–liquid-
like transition of locally favoured structures) but not for density fluctuations in a liquid state.
The reason for the apparent violation of the compressibility sum rule [10] can be understood
by comparing equation (10) [28] with

KT = 1

kBTρ2

∫
dr 〈ρr(r)ρr(0)〉

whereδρr = δρ∗ + c1ρ/τ
∗ δS∗ is the fluctuation of real density, on noting the smallness of

|c1ρ/τ
∗|. Fact (B) is also consistent with theq-dependence of equations (12) and (13). In our

model,ξcl is given by

ξ2
cl ∼ (τ ∗KS + κ∗Kρ)/ detH

which diverges asT → Tc nearTc. Within the mean-field approximation,ξcl ∼ (T − Tc)−1/2.
This relation is consistent with fact (C), as shown in figure 3. Fact (D), which is suggestive
of simple diffusion [6], can be explained as follows. In our model, bothδρ∗q andδS∗q can be
expressed as linear combinations of two eigenmodes characterized byω1 andω2. In particular,
the ‘slow’ critical mode decays as exp(ω1t), and the decay rate of this mode,0q = −ω1, is
proportional toq2 (see equation (8)). Furthermore,0q ∝ detH ∝ (T −Tc)→ 0 withT → Tc.
Thus, our model can well explain all essential features (facts (A)–(D)) of the anomalous excess
light scattering observed in supercooled liquids (‘Fischer clusters’) [6] at least qualitatively.

ξ
(n
m
)

cl

3 1 0 3 2 0 3 3 0 3 4 0 3 5 0

5 0

6 0

7 0

8 0

T ( K )

Figure 3. Fitting of our predictionξcl = ξ0((T − Tc)/Tc)−1/2 to theT -dependence ofξcl exp-
erimentally observed for BMMPC [6]. The adjustable parameters are determined asξ0 = 22 nm
andTc = 289 K, although they may have large errors. This long bare correlation length is consistent
with the assumption of the mean-field spinodal, according to the Ginzburg criterion.

Next we speculate as regards facts (E)–(G). Fact (E) is apparently inconsistent with the
diffusional dynamics of density fluctuations, and has been considered to be quite puzzling [6].
However, it can be explained reasonably as follows. The equilibrium dynamics is dominated by
a slow diffusional mode, while the non-equilibrium dynamics is dominated by a non-diffusional
mode. Note that, in the latter,ρ can be ‘locally’ (not diffusionally) changed. This is because
during this non-equilibrium process, after a temperature quench, the average densityρ̄ itself
increases, and thus the density is ‘not’ conserved, contrary to the equilibrium case. Because of
this local nature of the change inρ, τe can beq-independent for this non-equilibrium process.
Next, fact (F) is due to the feature that the time required for cluster formation,τe, becomes
extremely long forTf near to or belowTg, reflecting the increase inη. The divergence ofτe
with decreasingT means that a sample inevitably becomes out of equilibrium before reaching
Tc, and thusTc is kinetically hidden in real experiments (τe readily becomes longer than the
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S

ρ

x 0

Figure 4. A contour plot of the free energy of a supercooled liquid belowTc on the(ρ, S) plane.
The region of(ρ, S) near a normal-liquid state atx0 is shown. The crystalline state(S ∼ 0) is
located outside this region. Crystallization is kinetically prevented by the presence of a large energy
barrier (see the text). A homogeneous one-component liquid can demix into two phases, indicated
by the filled circles on the(ρ, S) plane.

α-relaxation time atTg, even at a temperature far aboveTg). Finally, we speculate concerning
fact (G). Vacuum distillation may realize the homogeneous situation (δρ ∼ 0, δS ∼ 0), which
is marginally stable and lasts for a long time. However, crystallization destroys this metastable
state easily.

Finally we consider phase separation belowTc. Because of the existence of a new order
parameterS and the resulting coupling betweenρ andS, phase separation can proceed on the
(ρ, S) plane even for a one-component liquid [30], as shown schematically in figure 4. For
the case wherehδS δS > 0 and detH < 0 [31], the eigenvector of the unstable branch shown in
figure 2 is of mixed character for allq (see equation (8)), and, thus, fluctuations of bothδρ and
δS grow simultaneously. Atq = 0 the componentsδρ∗ andδS∗ of the eigenvectorx∗ satisfy
δρ∗/δS∗ = −hδS δS/hδρ δS . This is quite consistent with the phase-separation behaviour of
water demonstrated by Stanleyet al [9] with numerical simulations near a so-called ‘second
critical point’, which may correspond to our gas–liquid-like critical point of locally favoured
structures: according to their simulation, density fluctuations(δρ) have a phase difference of
∼180◦ from fluctuations of the number density of hydrogen bonding(δS). Our model naturally
predicts this negative correlation between two order parameters [32]: a high-density region
has less bond order, while a low-density region has more bond order (see figure 4). It can,
thus, naturally explain why phase coexistence is possible in a single-component liquid [2,8,9].
Our model gives an intuitive physical explanation for a second critical point proposed by
Stanleyet al [9] and demonstrates that it may generally exist in any liquid. Glass-forming
liquids automatically satisfy the condition necessary for the existence of such a gas–liquid-like
transition, since vitrification is itself caused by the existence oflocally favoured structuresin
our picture [19].

In conclusion, we propose that the viscous slowdown nearTg [2, 3, 19], the ‘Fischer
clusters’ [6], and eventually the liquid–liquid phase transition [2, 8, 9, 30] are all related, and
appear as successive consequences of the competition (negative couplings) between the density
and bond ordering. In particular, the latter two phenomena are caused by a gas–liquid-like
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phase transition of locally favoured structures—in other words, thecollective creationof
locally favoured structures. We stress that a new additional order parameter (the bond order
parameter) is necessary for the physical description of (supercooled) liquids, contrary to the
common-sense view that liquids can be described using just one order parameter, density. This
two-order-parameter model can also describe the thermodynamic and dynamic anomalies of
liquid water [20]. Further studies are highly desirable, to check the relevance of our new
picture of liquid and its universality.

Finally, we mention some predictions of our model:

(a) There should exist neither clusters nor anomalous excess scattering for a liquid, which
does not form glass easily(c1ρ, c1S ∼ 0).

(b) The scattering intensity should decrease with increase in pressure for ordinary liquids.
(c) A larger1vS leads to larger∂n/∂S [28].
(d) Liquids with excess scattering should exhibit ‘polyamorphism’ at lower temperatures.
(e) Critical-like phenomena should be observed only in a mean-field-type system having long-

range interactions between locally favoured structures. This may explain why ‘Fischer
clusters’ are often observed in polymers.

The author is grateful to S F Edwards, E M Terentjev, C-Y D Lu, D V Grinev, E W Fischer,
S Dietrich, R Evans, and M Mezard for fruitful discussions.

References

[1] Chaikin P M and Lubensky T C 1995Principles of Condensed Matter Physics(Cambridge: Cambridge Unversity
Press)

[2] Angell C A 1995Science2671924
[3] Ediger M, Angell C A and Nagel S R 1996J. Phys. Chem.10013 200
[4] Debenedetti P G 1997Metastable Liquids(Princeton, NJ: Princeton University Press)
[5] Debye P and Bueche A M 1949J. Appl. Phys.20518
[6] Fischer E W 1993PhysicaA 201183 and references therein
[7] Wang C H and Fischer E W 1996J. Chem. Phys.1057316
[8] Aasland S and McMillan P F 1994Nature369633 and references therein
[9] Stanley H E, Cruz L, Harrington S T, Poole P H, Sastry S, Sciortino E, Starr F W and Zhang R 1997PhysicaA

23619
Harrington S, Zang R, Poole P H, Sciortino F and Stanley H E 1997Phys. Rev. Lett.782409

[10] This compressibility sum rule must be satisfied for all liquidsat equilibrium.
[11] The ‘apparent’ violation of the compressibility sum rule is suggestive of the existence of an extra order parameter.
[12] Hereafter we useTc to represent both a critical point and a mean-field spinodal temperature.
[13] Frank F C 1952Proc. R. Soc.A 21543
[14] Kleman M and Sadoc J F 1979J. Physique Lett.40L569

Nelson D R 1983Phys. Rev.B 285515
[15] Cohen C, Fleming P D and Gibbs J H 1976Phys. Rev.B 13866
[16] Glarum S J 1960J. Chem. Phys.331371
[17] Blender J T and Shlesinger M F 1992J. Phys. Chem.963970
[18] Yeo J and Mazenko G 1995Phys. Rev.E 515752
[19] Tanaka H 1998J. Phys.: Condens. Matter10L207

(Tanaka 1997Los Alamos Preprintcond-mat/9706174)
Tanaka 1997Los Alamos Preprintcond-mat/9706176

[20] Tanaka H 1998Phys. Rev. Lett.805750
Tanaka H 1999J. Chem. Phys.submitted

[21] For icosahedral structures, for example,S can be defined as the local average of the rotationally invariant com-
bination(Ql) of the bond-orientational parametersQlm (see Nelson’s paper in reference [14] for definitions).

[22] Hohenberg P C and Halperin B I 1976Rev. Mod. Phys.49435
[23] Hohenberg P C and Nelson D R 1979Phys. Rev.B 202665



L168 Letter to the Editor

[24] Fischer H P and Dieterich W 1997Phys. Rev.E 566909 and references therein
[25] Unlike in the case of reference [19], we do not consider crystallization here. Thus, the meaning of the Hamiltonian

is essentially different from that in reference [19], although they look similar.
[26] This should not be confused withα-relaxation.
[27] Kobayashi K K 1969 J. Phys. Soc. Japan271116

Schneider T, Brout R, Thomas H and Feder J 1970Phys. Rev. Lett.251423
Kirkpatrick T R 1985Phys. Rev.A 323130
Kirkpatrick T R and Thirumalai D 1989J. Phys. A: Math. Gen.22L149

[28] It may be reasonable to assume that the local bond ordering directly (not via density) affects the refractive index
n if we consider its unique local symmetry and the electronic nature of bonding.

[29] Munakata T 1977J. Phys. Soc. Japan431723
[30] Phase separation is possible ifTc > Tg .
[31] x0 becomes a saddle point in this case.
[32] More strictly, however, spatial fluctuations in density and bond order are coupled, according to the direction of

the associated eigenvector, which changes withq.


